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ABSTRACT

The least upper bound of the eigenvalues of second

order density matrices for a system of fermions is proved

to be n for a system of 2n or Zn+ 1 identical

fermions. It is also shown that this limiting state may be

interpreted as a system of n identical pairs behaving

as quasi-bosons.



1. INTRODUCTION

It is known that some features of a system are illustrated by the

spectrum of its first-order density matrix. For example, an eigenvalue of

this matrix may be interpreted as the occupation number of the correspond-

ing spin-orbital, and if all the eigenvalues are equal to 1, the state can be

described by a single Slater determinant 1). We might expect that the

spectrum of a higher-order density matrix would also characterize the

structure of the system. However, it seems that little has been done along

this line ?). In this paper, we discuss the range of the eigenvalues of a

many-particle density matrix in order to approach this problem.

i) Per-Olov Ldwdin, Phys. Rev. 97, 1474 (1955)

2) See, however, the preliminary report of A. J. Coleman, Canad.

Math. Bull. 4, No. 2, May (1961). Further progress has been re-

ported by him at Sanibel Island, Winter Institute in Quantum

Chemistry and Solid State Physics, January 2-13, 1961.

For this purpose, it is convenient to use a wave function expanded in

terms of the eigenfunctions of density matrices 3). The'expansion is obtained

3) B.C. Carlson and J.M. Keller, Phys. Rev. 121, 659 (1961)

by the use of the following theorems.

Theorem I. If A is a linear operator which renders a completely

continuous transformation 4) of one Hilbert space into another, and f is

an element of the first Hilbert space, Af can be written in the form

4) See e.g. F. Riesz and B. Sz -Nagy, Functional Analysis, (Frederick

Ungar Publishing Company, New York 1955) pp 206
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Here {fi} and {gi} are orthonormal sets in the two Hilbert spaces involved,

and { i±} is a non-increasing sequence of positive numbers. The sequence

can be finite or infinite, and in the latter case it tends to zero.

Corollary 1:

A If f, f A(l'.

Theorem 2. If there exists a normal operator S such that AS = A

every fi is an eigenelement of S , i.e. Sf. = f.

3,5)Although special cases of Theorem 1 have been proven by others

it would be useful to present it in a more general form. The proof of the

above theorems is given in the Appendix A.

5) A.T. Amos and G.G. Hall, Proc. Roy. Soc. A263, 483 (1961).

A normalized wave function N(x 1 , xZ, ... xN) of N fermions may

be regarded as a kernel of the operator A , which transforms absolute

square integrable functions of M fermions into those of N - M fermions.

SJJ d.x,'- cdx,. ~i/(x.. x",~v.4

or, in a brief form

'f 00 f -k(x.,Y) Y f9cy
where x and y denote (xI ... xNM) and (xl'... xM') respectively.

Since the wave function (x,y) is normalized:

f1? c xyL<xyd, - I,

it renders necessarily a completely continuous transformation (for a proof,

see the Appendix B). By the use of Theorem 1, we obtain the following expan-

sion of the wave function T :

7k= - 11 Z cx.<>f.,J, (1-,)
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where.

J 1jcx) h(X dX -

.f fp fc jp (Y y - j
and

! Aj > 0 for<

Since the density matrix of order M of this pure state is defined

by

we obtain immediately the diagonal expansion of the density matrix from

(1-1) in the form

FM ( X)- (M) (i jA :fY, '. .
Similarly the density matrix of order N-M is found to be

TFN-M (X, X,, t4 () Z 1 (X) 1r<><, .

In order to evaluate the symmetry property of fi F it is convenient

to introduce the antisymmetry projection operator defined with respect to

the coordinates y = (x ' ... xM') :

OAs, 1 -. P P.
Here P is a permutation operator which permutes only the coordinates

y and £p is its parity. It is easy to see that 0 AS y  is self -adjoint and

that

S "P (X,.yV OAS~y fc &y y OAS, y Nl'"Y) f(,Y)d J",Y' J1'
Thus by using Theorem Z, it follows that OAS, f = f, i. e. that if the

function T is antisymmetric, fi and gi in the expansion (I-I) should

also be antisymmetric.
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2. THE LEAST UPPER BOUND

The largest eigenvalue of a. density matrix of order M may be

regarded as a functional of Y'

Introducing a projection operator O which projects out the state T:

0 - - -I- -P 1-,

we obtain the following equality from (I-1);

Introducing the total antisymmetry projection operator

OAS - N!

it is found for any function w = o(x, y) that

L (OAS- O+)) - (.(1- 0*) OAS( -O+))-

-(t1-0+)w,. OAS I1-0 ) ,) 1 o0.

Thus we obtain the following inequality

,()M p f OAS O tfi ) , 2i

where f and g are normalized functions of M and N-M particles,

respectively. Since the last term of (2-1) does not depend on T , it follows

that

We shall now prove that the last term of (2-2) is equal to XM, N

Let { f(k)) and {g(k be the sets of normalized functions which give a
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solution of the above extremum problem:

o < X. '(k)MN)1k, ) '4So,,."f'"k) ,) AA (Io,,,AtSf)

as k-oo.'

Since a set of functions { y(k) defined by the equation

consists of normalized antisymmetric functions, it follows from Corollary 1

that

X M,. , (. . C h,, ' "( N ) I ( k,( I )f t -,1 ( k ) ) i 2  - k )

i.e. that

k ((2-3)

By comparing (2-3) with (2-2), it is found that

\MM, -(OAMSfr ( 6 (2-4)

6) We note that for a system of identical bosons, the whole argument

is valid by replacing the antisymmetry projection operators by the

symmetry projection operators. Thus the least upper bound of the

eigenvalues for bosons is given by the equation

_ N=() N ) ~ s f (2-5)

under the condition (f, f) : (g, g) 1 . Here the total symmetry projec-

tion operator OS  is given by the equation

It is readily seen from (2-5) that

X MN - (M). (for a system of bosons)
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3. UPPER BOUNDS

It is convenient to write the antisymmetry projection operator in the

form

(MN) OAf%(1,"',N): OAS(i,";'M)0AS(M+1,,";N)x

~~N-M, M)xZCi("~l()p(,..x2. 2 c ) o0AS(4,--,MOAs(M t ;N) (3-1)

1,-o

where OAs(P ... g) denotes the antisymmetry projection operator defined

with respect to the coordinates in the parenthes'is, and

P{(1,M+1)(2,M+Z) ... (i,M+i)) denotes the operation of replacing the

coordinate 1 by M+1 , M+1 by 1, ... , i by M+i and M+i by i

This shows that f and g which give the extremum in the equation (Z-4)

should be antisymmetric. Therefore we may introduce the density matrices

of the i-th order ri,, and rg reduced from f and g . By the use

of these density matrices, we obtain
mit(MN-M.)

AM,N aw I + *T. Tf TL 2  (3-2)

Since density matrices are positive definite, it is easy to see that

0 :r s, FhUjF1 T. (IN -mA ; R i . m>

- 'u~i.[ (~)~,-M ( ) H (3-3)

From (3-2) and (3-3) we obtain an upper bound of the eigenvalues by the

recurrence equation
.7)

xm,,KAm., + *" ;(+m) A (34
i-2i

The solutions of (3-4) are

7) [x] stands for the integral part of x



-7-

A oN~

A 1,N 1

A 3,N + 1 + Z N 2e

A 4, = 1 + (()- 1)(i+ ,l[ -- r~)) ((1-t+ [J)( --+4--)
N a

A2N4 o 2 + 574,N-YN Z10

It should be noticed that

This is the same order of magnitude as the largest eigenvalue of rM_

for a system of [ N] bosons.

Since the eigenvalues of the first order density matrix of a single

determinant wave function are 1, A 1,N is equal to X1, N . It is shown in

Section 5 that A2, N is also equal to XZ, N

4. EXTREME PROPERTIES OF WAVE FUNCTIONS

In this section we study the case where the largest eigenvalue of the

M-th order density matrix is almost equal to the least upper bound XM, N

Suppose we have a wave function T such that

(f FM,f f).- - XM, N - E

where E is a small non-negative number and f is a normalized func-
tion of M particles. It should be noted that f may or may not be an

eigenfunction of rM, T Define a function 0 by the equation

, ,,..m-l(,'/ ,,OAS (M.., + N).,-:,
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where

It is easy to see that

- 1 (f FM..+ -f)-
X M,A 14

',M')/A M,N ( 'OAs f)=

- )/N (-'.M f -

and

-( .)- ( )tr Of AM. < 1

Then it follows that

2 -2 1 - 2E(4
AM, ,W (41

From the first three terms of (4-i), we obtain

2 1 E 2E
)M, N ?,,_
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Summarizing the results obtained above, we have a theorem.

Theorem 3. If a normalized M-particle function f satisfies the
.following equation

(ITM,. ti, rX4 - E

the wave function Y can be expressed as

+ 4) )/XM,N OAS 1,...S,,N1)-)+.U,...),

where e)-, E and 1,.4,,-,.,

We apply the above theorem to the first order density matrix. We

know that some of the eigenvalues of the first order density matrix can be

Tf,N(=)',

In such a case, it follows from Theorem 3 that the wave function T can be

expressed as

*1 - i" OAS f,€, ' ,,...,rj (4.-3)

Using (3-i), we obtain

I -(+-,i)- - N (f, . o,,, ) .. ,,,. ,,. J', ,.o.,,,,,

i.e.

dcf "1 ) 1 2,..; - 0 (4-4)

The first order density matrix of g is found from (4-3) and (4-4) to be

- - .k (4-5)

Comparing (4-2) with (4-5), we see that the largest eigenvalue of r, is

also I if p > I. Thus by repeated application of the previous discussion, it
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is found that

Nt €- OAS 1 ,,-. (r) }(?+I--, N), (4-6)

. - T _ - x ., - 1 . (4 -7 )

and 4 +x4 f,:(.,) A, ***... N-.1') -o 0(4-8)
c(i ,1 (,4)

5. THE LEAST UPPER BOUND OF THE EIGENVALUES

OF THE SECOND ORDER DENSITY MATRICES

In this section, we prove that the upper bound AZ, N derived in

Section 3 is actually the umallest.

Define functions F 2 n(l. .. Zn) and Fzn +I(. .. Zn+1) by the equa-

tions

F2ft. (1, --- ,2-n) - OAS IN, 2) 1(3,) .. 1, 2,W)
(5-i)

where f(1, 2) is a normalized antisymmetric function of two particles and

g(l) is an arbitrary nor-naiized function of a particle.

Then it is found that

SF2,A , F2%, 2 - ,, + 0 F,,- 2)-

F ,,,,, F2,,,,) i + 0 (.) (5-2')
1(ZA + 0



-11-

where

tLr ,() JJt(1)(4f' f(24 dXgdX2 dcBdxq. (5-3)

Proof
!Fa,,, F2,, ) OAS ... OAS..)

-- (...I OAS f-.i)-

(2%n)! P

(2vvi)J p "

where ap EP (f ... f p f .. f). There exist Znn' permutations which
interchange the particles keeping every pair. It is easy to see that a = 1
for such a permutation since E P f ... f = f ... f , but otherwise a is

the order of tr(rf) 2  P

For odd N , (5-2') can be similarly proven. In this case some of
the permutations will give integrals of the order tr(r1 , fF g) , but

0~ F J, <! T1lCf~ t-E (r&z4 1,1 E.

Q.E.D.

Let ki, N()...N, - FN (1,-., FN/I , FN) (5-4)

Using (3-1), (5-2) and (5-2') we obtain

(jN'",4N) " 1 -

F N., FN. ) -2 OS PN-z,(FN , FN -,

N2



-12-

Here we have used a trivial equality

OAS (1 •,N) - OAS (3,"-,N) OAS ft,:N) OAS (3,"- -N).

Since tr r,,f r, N-a= O(E) we finally obtain

25

It is possible to make tr(ri, f)2 as small as we wish, and therefore the

largest eigenvalue of P2,Nw can be arbitrarily close to AZ, N "

It is found further that a wave function T can be approximated by

the form (5-4), if the largest eigenvalue is close to AZN " To prove this,

suppose we have an N-particle wave function T and a 2-particle function

f such that

(f -2  ) 'k (5-6)

Then using Theorem 3 and (3- 1), we obtain

N OAS/f ji +AS

where (hlhl)< ZE/AZN,

and

A2,N

-P 1 {t - T ia,4 ±(I T54f)1A , N

Since tr rl, > o , we see that

sf t T 2,5 f A2,N-2 - 2 F, (5-7)

showing that the function g, can be again expressed as

J(N"2)/A 2 ,N-2 OAS 4+ t 2.
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where (h 2 l h 9) < 4 E/A 2,N-2 Repeating the procedure, we obtain

a decomposition of the total wave function TI:

k ,( )/Az. O ,(2 i)/A.N- 2 OASf.+"J 42 1 + Al

N! N O AS f (1, 2) f3,4) ..f(N-1l, N) (1-..oN) (N: even)
21 ( N/2)!

N!
N~'f! OAS 1.2)f3,+)..(N-2, P-1) w) + 4 N) (N,- odd)

where (hlh) = 0( ). Q.E.D.

By using (5-3), the first order density matrix can be written in the

form

1 - , f (N: even)

(5-9)

T Na I 1 1 -t- (N: odd)

The expressions, (5-8) and (5-9) suggest that such a state may be interpreted

as a system of fermion pairs which occupy the same state. These electron

pairs behave like quasi-bosons and, since they are all in the same state, the

limiting wave function corresponds to a situation with complete Bose-Einstein

condensation.
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APPENDIX A

Let f and g be elements of two Hilbert spaces E and E'

respectively, and A be a linear operator which is completely continuous

and hence transforms every infinite and bounded set in E into a compact

set in E' • If , A is not a zero operator, there exists a sequence

{(fn)} such that

11 f("'i1 -1 and II Af:"'I -* Ar_ If Af #n/f to l

where L, > 0 . From the compactness of {Af(n)) , it follows that the

sequence {Af(n)/ _} {g(n)} contains a subsequence {g( n k)} which

converges to an element g, of E'.. The norm of g, is 1, since

g =(nk) . Af(nk)

In addition, the sequence {f(nk)} itself converges to an element

f of E . Consider a linear functional K(f) = (Af, g1) . The least upper

bound of IK(f)l = v on the sphere [fll 1 1 is equal to Lj. To prove

v 2L j , consider the sequence {f(nk)} . Then

v Z I K ( J",)l - I(Af'", .l - C k -(--, 00)

On the other hand

" I (Aj'"~ A11 'LnI. I (A A"' Af( &)

I -iJz - I A '~"1I [LA IfA-fC " <

where .{f,(m)} is a sequence which gives

I K CA /W"~ .. 2- 040t-

Thus we obtain

I f("li)- -f_ fL"") f-ee1 4

I CI< IK 'K'""r iK'1""')'--(4'"')l1
S 4--

.4 - I 4 1 04 1

P -o
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since IK(f)j < , II f II for any fe E Thus we can conclude that
f(nk) converges to an element f" of E as a result of the completeness

of E.

It is easy to see that the elements fI and g satisfy the equation

A fi - 1Y

since A fAI F jlh.) for any 'hit

We note that

f~E
EF~'

under the condition II 1 1 = II g II = 1, since

, - (A 1, j4 ) :!r A.t I (A-, l -1. A f I A .fI -A i11

Repeating the above procedure in the subspace of E which consists

of all the elements orthogonal to f 1 , we obtain a pair of elements (f 2 and g.).

and Z , if A is not a zero operator in the subspace. In general, fk

and gk are obtained as a solution of the following extremum problem;

AI. ik ) AjI/- > 0 (A-I1)

under the conditions f fk II = II gk II = 1 and (f, f) = 0 (i = ,,..., k-I).

This procedure terminates when Rk vanishes. It follows that

and moreover that the set {gk} is an orthcnormal set. This follows from

the evaluation

Oct pajI l * -  Jl.l+ Ip l2 + 2

- II A (2 , -t - -_

(I<1).
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Setting P L (g 1 , gk)  we obtain
Lk

I¢ ,,, ,)j ¢ + -. )2o

Hence (gk' g 1 ) = 0.

The sequence {Jn} is evidently composed of monotonically

decreasing and positive terms

I1l 1 ; _ > ... > 0.

We can prove that Lk 0 as k - c if the sequence is infinite. If

k iL > 0 , the sequence {Fkgk} = A{fkl , which is a bounded sequence

{fk) transformed by A , would not contain a convergent subsequence,

since

An arbitrary element of E may be expressed as

-21 (f,)f (AZ)

where f(n) is orthogonal to fi (i = 1, 2, ... n) and

f12

u €"l' - I I +. l - tw- ,et ,h -- {

Therefore if the sequence {ILi) is infinite,

IA ~J 4 ~~I~ ~ fU - 0

as n -. co. Operating by A on both sides of (A-2) and taking the limit,

we obtain

00 00

In the case where the sequence {)i terminates at Ik it follows from

(A-1) that

#I Af' -0.
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Thus we obtain

k

This proves Theorem 1.

It follows from Theorem 1 that

(Af) - 21 K (f Pi 2 (f, toIaZ1 2 .,l

Setting f f! and g : gl , we obtain

Thus, we.have proven Corollary 1.

To prove Theorem 2, let S be a normal operator such that

AS=A

Then

- 1 , ( A (1-S) 1- S') 1K';, ,,) -

T0, pve T.

This proves Theorem 2.
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APPENDIX B

In order to prove that the transformation under consideration is

completely continuous, we shall show that any weakly convergent sequence

{f (y)) is transformed by T(x,y) into a strongly convergent sequence

{gn(x)} •

From (1-1) it follows that the function

has a definite and finite value for almost all x . Therefore, since

n (y)) is weakly convergent,

5" x) - 5 -) S- (X,,y t-' CY d )xy)f()

tends to 0 almost everywhere when m, n - o•

Using Schwarz's inequality, we have

I , - f 4 , (xY) f,,(Y) '(xJ',, ' dydy

:5 1 C X, yI'd f I fm (y)I ,dy _e M k ()

Here a finite number M is an upper bound of a sequence {f Ifn(y) Zdy}

Then

I 'c 11, (xr+1§.CxI'+2il, (, I 42M k c(x

Since 4Mk(x) is a Lebesgue-integrable function and we have shown that

Ign(x) - gin(x) I tends to 0 almost everywhere, it follows from Lebesgue's

theorem that

J 1. ,() -5,(,',tK(, -ie 0

when n, m-o- . Q.E.D.
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